Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Do symplasmic networks in cambial zones correspond with secondary growth patterns?

Identifieur interne : 002F19 ( Main/Exploration ); précédent : 002F18; suivant : 002F20

Do symplasmic networks in cambial zones correspond with secondary growth patterns?

Auteurs : Maike Fuchs [Allemagne] ; Aart Jan Eeuwe Van Bel ; Katrin Ehlers

Source :

RBID : pubmed:20853011

Descripteurs français

English descriptors

Abstract

The plasmodesmal (PD) network in the cambial zone of Arabidopsis thaliana hypocotyls was analysed using electron microscopy and dye-coupling studies and compared to those of internodes of Populus nigra and Solanum lycopersicum. In all species, PD densities and frequencies undergo alterations in topologically successive cambial walls reflecting species-specific patterns of PD degradation and PD insertion during cell development. Longitudinal PD fission is responsible for an abrupt increment of PD numbers in specific walls of the youngest derivatives at the xylem and/or phloem side. Here, PDs seem to mediate positional signalling to control tissue fate and early cell determination. PD numbers at all cambial interfaces of A. thaliana correspond to those of the herbaceous tomato, but are higher with the woody poplar. This suggests a positive correlation between PD frequencies and the rapidity of cell division activity. Photoactivated green fluorescent protein (26 kDa) did not diffuse through cambial PDs of A. thaliana. This is in keeping with the common size exclusion limit (SEL) of 8-10 kDa observed for PDs at the youngest interfaces of tomato and poplar which may mediate diffusive exchange of developmental signals of equal molecular size. The regular growth patterns in internodal cambial zones of poplar and tomato result from synchronized cell division activity of neighbouring initials. A. thaliana hypocotyls have an irregular mode of secondary growth. Here, signalling through PDs in misaligned radial walls between non-homologous derivatives may control tissue development. The observed organizational differences between the cambia cast doubts on the suitability of A. thaliana as a model plant for cambial research.

DOI: 10.1007/s00709-010-0208-7
PubMed: 20853011


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Do symplasmic networks in cambial zones correspond with secondary growth patterns?</title>
<author>
<name sortKey="Fuchs, Maike" sort="Fuchs, Maike" uniqKey="Fuchs M" first="Maike" last="Fuchs">Maike Fuchs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of General Botany, Justus-Liebig-University, Senckenbergstrasse 17, 35390, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of General Botany, Justus-Liebig-University, Senckenbergstrasse 17, 35390, Giessen</wicri:regionArea>
<wicri:noRegion>35390, Giessen</wicri:noRegion>
<wicri:noRegion>35390, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Bel, Aart Jan Eeuwe" sort="Van Bel, Aart Jan Eeuwe" uniqKey="Van Bel A" first="Aart Jan Eeuwe" last="Van Bel">Aart Jan Eeuwe Van Bel</name>
</author>
<author>
<name sortKey="Ehlers, Katrin" sort="Ehlers, Katrin" uniqKey="Ehlers K" first="Katrin" last="Ehlers">Katrin Ehlers</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:20853011</idno>
<idno type="pmid">20853011</idno>
<idno type="doi">10.1007/s00709-010-0208-7</idno>
<idno type="wicri:Area/Main/Corpus">003059</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003059</idno>
<idno type="wicri:Area/Main/Curation">003059</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003059</idno>
<idno type="wicri:Area/Main/Exploration">003059</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Do symplasmic networks in cambial zones correspond with secondary growth patterns?</title>
<author>
<name sortKey="Fuchs, Maike" sort="Fuchs, Maike" uniqKey="Fuchs M" first="Maike" last="Fuchs">Maike Fuchs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of General Botany, Justus-Liebig-University, Senckenbergstrasse 17, 35390, Giessen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of General Botany, Justus-Liebig-University, Senckenbergstrasse 17, 35390, Giessen</wicri:regionArea>
<wicri:noRegion>35390, Giessen</wicri:noRegion>
<wicri:noRegion>35390, Giessen</wicri:noRegion>
<wicri:noRegion>Giessen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Bel, Aart Jan Eeuwe" sort="Van Bel, Aart Jan Eeuwe" uniqKey="Van Bel A" first="Aart Jan Eeuwe" last="Van Bel">Aart Jan Eeuwe Van Bel</name>
</author>
<author>
<name sortKey="Ehlers, Katrin" sort="Ehlers, Katrin" uniqKey="Ehlers K" first="Katrin" last="Ehlers">Katrin Ehlers</name>
</author>
</analytic>
<series>
<title level="j">Protoplasma</title>
<idno type="eISSN">1615-6102</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (cytology)</term>
<term>Arabidopsis (growth & development)</term>
<term>Cambium (cytology)</term>
<term>Cell Size (MeSH)</term>
<term>Cell Wall (chemistry)</term>
<term>Hypocotyl (growth & development)</term>
<term>Lycopersicon esculentum (cytology)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Plasmodesmata (ultrastructure)</term>
<term>Populus (cytology)</term>
<term>Wood (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (croissance et développement)</term>
<term>Arabidopsis (cytologie)</term>
<term>Bois (croissance et développement)</term>
<term>Cambium (cytologie)</term>
<term>Hypocotyle (croissance et développement)</term>
<term>Lycopersicon esculentum (cytologie)</term>
<term>Microscopie confocale (MeSH)</term>
<term>Microscopie électronique à transmission (MeSH)</term>
<term>Paroi cellulaire (composition chimique)</term>
<term>Plasmodesmes (ultrastructure)</term>
<term>Populus (cytologie)</term>
<term>Taille de la cellule (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Wall</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Paroi cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arabidopsis</term>
<term>Bois</term>
<term>Hypocotyle</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cambium</term>
<term>Lycopersicon esculentum</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Arabidopsis</term>
<term>Cambium</term>
<term>Lycopersicon esculentum</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arabidopsis</term>
<term>Hypocotyl</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Plasmodesmata</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Size</term>
<term>Microscopy, Confocal</term>
<term>Microscopy, Electron, Transmission</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Microscopie confocale</term>
<term>Microscopie électronique à transmission</term>
<term>Plasmodesmes</term>
<term>Taille de la cellule</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The plasmodesmal (PD) network in the cambial zone of Arabidopsis thaliana hypocotyls was analysed using electron microscopy and dye-coupling studies and compared to those of internodes of Populus nigra and Solanum lycopersicum. In all species, PD densities and frequencies undergo alterations in topologically successive cambial walls reflecting species-specific patterns of PD degradation and PD insertion during cell development. Longitudinal PD fission is responsible for an abrupt increment of PD numbers in specific walls of the youngest derivatives at the xylem and/or phloem side. Here, PDs seem to mediate positional signalling to control tissue fate and early cell determination. PD numbers at all cambial interfaces of A. thaliana correspond to those of the herbaceous tomato, but are higher with the woody poplar. This suggests a positive correlation between PD frequencies and the rapidity of cell division activity. Photoactivated green fluorescent protein (26 kDa) did not diffuse through cambial PDs of A. thaliana. This is in keeping with the common size exclusion limit (SEL) of 8-10 kDa observed for PDs at the youngest interfaces of tomato and poplar which may mediate diffusive exchange of developmental signals of equal molecular size. The regular growth patterns in internodal cambial zones of poplar and tomato result from synchronized cell division activity of neighbouring initials. A. thaliana hypocotyls have an irregular mode of secondary growth. Here, signalling through PDs in misaligned radial walls between non-homologous derivatives may control tissue development. The observed organizational differences between the cambia cast doubts on the suitability of A. thaliana as a model plant for cambial research.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20853011</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1615-6102</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>248</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Protoplasma</Title>
<ISOAbbreviation>Protoplasma</ISOAbbreviation>
</Journal>
<ArticleTitle>Do symplasmic networks in cambial zones correspond with secondary growth patterns?</ArticleTitle>
<Pagination>
<MedlinePgn>141-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00709-010-0208-7</ELocationID>
<Abstract>
<AbstractText>The plasmodesmal (PD) network in the cambial zone of Arabidopsis thaliana hypocotyls was analysed using electron microscopy and dye-coupling studies and compared to those of internodes of Populus nigra and Solanum lycopersicum. In all species, PD densities and frequencies undergo alterations in topologically successive cambial walls reflecting species-specific patterns of PD degradation and PD insertion during cell development. Longitudinal PD fission is responsible for an abrupt increment of PD numbers in specific walls of the youngest derivatives at the xylem and/or phloem side. Here, PDs seem to mediate positional signalling to control tissue fate and early cell determination. PD numbers at all cambial interfaces of A. thaliana correspond to those of the herbaceous tomato, but are higher with the woody poplar. This suggests a positive correlation between PD frequencies and the rapidity of cell division activity. Photoactivated green fluorescent protein (26 kDa) did not diffuse through cambial PDs of A. thaliana. This is in keeping with the common size exclusion limit (SEL) of 8-10 kDa observed for PDs at the youngest interfaces of tomato and poplar which may mediate diffusive exchange of developmental signals of equal molecular size. The regular growth patterns in internodal cambial zones of poplar and tomato result from synchronized cell division activity of neighbouring initials. A. thaliana hypocotyls have an irregular mode of secondary growth. Here, signalling through PDs in misaligned radial walls between non-homologous derivatives may control tissue development. The observed organizational differences between the cambia cast doubts on the suitability of A. thaliana as a model plant for cambial research.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fuchs</LastName>
<ForeName>Maike</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of General Botany, Justus-Liebig-University, Senckenbergstrasse 17, 35390, Giessen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Bel</LastName>
<ForeName>Aart Jan Eeuwe</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ehlers</LastName>
<ForeName>Katrin</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Austria</Country>
<MedlineTA>Protoplasma</MedlineTA>
<NlmUniqueID>9806853</NlmUniqueID>
<ISSNLinking>0033-183X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048429" MajorTopicYN="N">Cell Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018546" MajorTopicYN="N">Hypocotyl</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031425" MajorTopicYN="N">Plasmodesmata</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>08</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20853011</ArticleId>
<ArticleId IdType="doi">10.1007/s00709-010-0208-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Plant Res. 2006 Jul;119(4):271-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jun;20(6):1504-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18667640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Sep;5(9):712-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15340379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Sep;14(9):2071-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12215506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14 ):5984-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2004;235:93-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15219782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):843-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):557-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1978 Jan;143(2):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24408368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(2):271-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 Dec;40(12):1489-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18997783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ultrastruct Res. 1969 Jan;26(1):31-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4887011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Jan;52(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jan;231(2):371-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19936780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2001;216(1-2):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11732191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):347-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18654740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jan;125(1):123-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Mar;105(3):375-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20045870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2227-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15668382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1998 Apr;125(8):1477-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9502728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2007 Dec;94(12):1911-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Nov 20;390(6657):287-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9384380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(2):319-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9789088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1963 Apr;17:208-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13986422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Dec;54(393):2709-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2003 Sep;222(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14513306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11945-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16087887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Jun 11;97(6):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10380926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(13):3485-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17898423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Apr;114(4):594-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11975734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):20032-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19064928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):309-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Sep;106(3):385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20584737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 May;52(358):1051-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Acad Sci III. 1999 Aug;322(8):633-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10505236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Jan;210(2):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10664133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2001;218(1-2):31-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11732318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2009 Dec;20(9):1097-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19770063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ehlers, Katrin" sort="Ehlers, Katrin" uniqKey="Ehlers K" first="Katrin" last="Ehlers">Katrin Ehlers</name>
<name sortKey="Van Bel, Aart Jan Eeuwe" sort="Van Bel, Aart Jan Eeuwe" uniqKey="Van Bel A" first="Aart Jan Eeuwe" last="Van Bel">Aart Jan Eeuwe Van Bel</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Fuchs, Maike" sort="Fuchs, Maike" uniqKey="Fuchs M" first="Maike" last="Fuchs">Maike Fuchs</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20853011
   |texte=   Do symplasmic networks in cambial zones correspond with secondary growth patterns?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20853011" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020